

نصراله افاضل، ياشار انگوتى

$\square$

III (M) (M)

IV9

| برهمكنش | ف |
| :---: | :---: |

ها ادامه فصل

|  | آشنايى با فِّريك المى | ف) (a) |
| :---: | :---: | :---: |

4 ادامه فصل \& تجربى

PVA فصل (8) آشنايى با فيزيك هستهاى ه/ ادامه فصل 1 تجربى


## مرور سريع فيزيك كنكور

حركت يكنواخت
حركتـى اسـت كـهـ در آن سـرعت (بزرگگى و جهــت) متحـركـر در همؤ لحظهها يكسان است.



=
ا در حركـت يكنواخـت، در هــر بـازه زمانـى يكسـان جابهجايــى جسم يكسان است. r سرعتمتوسط در هر بازءزممانى دلخواه ثابتو وبرابر سرعت جسمهاست. T معادله حركت يكنواخت برحسب زمان از درجهٔ اول است. F نمودار مكان-زمان حركت يكنواخت به شكل خط باشيب ثابتاست.


$\Delta x=v t \quad$ معادله جابهجايى -زمان در حركت يكنواخت: ه \& در حركـت يكنواخــت تنـدى و اندازءٔ ســرعت جســم در هر لحظه يكسان است.

## فصل اول (3) مهروه

(i) تست: جسمى با سرعت ثابت حركت مى تند و در لحظههاى
 عبور مىكند، معادله حركت جسم در SI كدام است؟

$$
\begin{aligned}
& \mathrm{x}=-\mu \mathrm{t}+\mathrm{H}\left(r \quad \mathrm{x}=-\mu \mathrm{r}+\mathrm{f}_{(1)}\right. \\
& x=-r t+\Lambda(r \quad x=-r t+r(r
\end{aligned}
$$

گام اول: معادلئ مكان - زمان را براى دو لحظه و دو مكان مربوط به $x=v t+x$ 。 آنهامىنويسيم:
$\left.\begin{array}{l}t_{1}=r s \Rightarrow r=r v+x_{0} \\ t_{r}=r_{s} \Rightarrow-i r=4 v+x_{0}\end{array}\right\} \Rightarrow v=-r m / s, x_{0}=1 r m$ $x=-r t+\mid r \quad$ گام دوم: معادله حركت رامینويسيم: (©) تست: نـــمودار مكــــان - زمـان متحركى كه روى خط راسـت حركـت مىكنــد، مطابسق شــكل زيــر اسـت. معادلهٔ حركـت اين


جسم در SI كدام است؟

$$
\begin{gathered}
x=1 / \Delta t-r(l \\
x=1 / \Delta t-\varphi(r \\
x=r t-r(r \\
x=r t-9\left(r^{f}\right.
\end{gathered}
$$




گَام اول: بـراى يافتـن ســرعت، در بـا بـازء ثانيـه از شـيب خط t= t=

استفاده مىكنيم:
$v=\frac{1 r-\rho}{\Lambda-r}=r \mathrm{~m} / \mathrm{s}$

گام دوم: بـراى محاسـبئهx x از تشـابه دو مثلـث هاشـور خـورده
$\frac{x_{0}}{i r}=\frac{r-0}{r-\lambda} \Rightarrow x_{0}=-r m$
استفادهمىكنيم:

K

 از نقطءٔ A به دنبال كاميون عبور مى كند. اتومبيل چند ثانيه چس از عبور از نقطهٔ A به كاميون میرسد؟ IT (Y $\quad 10(Y \quad \lambda(Y \quad$ ( " معادله حركت كاميون و اتومبيل را مىنويسيم و مكان آنها را را برابر يكديگر قرار مىدهيم، اگر مدت حركت كاميون را t بناميم مدت زمان حركت اتومبيل t - t است. $x$ كاميون $=\frac{r q}{r / q} t=1 \circ t, x$ اتومبيل $=r \circ(t-\Delta)$
شرط به همر رسيدن دو متحرك اين است كه مكان آن ها يكسان باشد

$t_{\text {t }}=1 \circ \mathrm{~s} \Rightarrow t$ اتومبيل $=1 \circ-\omega=\Delta s$

## حركت نسبى

اگر دو متحرك همزمان روى يك خط مستقيم با سرعتهاى ثابت V, و


d = (v, $\left.\pm v_{\gamma}\right) t$

## فصل اول (3) مهروماه

مد ت تذكر: از معادلئ حركت نسبى در صورتى مىتوتوان استفاده كرد كه
 t

 حركت مى كنند. يس از چجند ثانيه دو متحرك به هم هم میرسند؟ 90 (f ra (r Yo (Y la () ت

 $d=\left(v_{1}+v_{ץ}\right) t \xrightarrow{d=q_{0} \cdot m} \varepsilon_{0}=\left(r_{0}+l_{0}\right) t \rightarrow t=r_{\circ} s$

(®) تست: نمـودار مـكان - زمـان دو
 حركـت مى كنند مطابق شـــكل اســت
 میرســند؟ و مكان آنهــا در اين لحظه برحسبمتر كداماست؟



$$
\begin{aligned}
& v_{A}=\frac{\circ-r_{0}}{r-\rho}=-\Delta \mathrm{m} / \mathrm{s} \\
& v_{B}=\frac{-\lambda-(-\zeta \mu)}{f-。}=r \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { جهـت حركـت آنهـــا به طرف يكديگــر و در خلاف جهت همم اســت. } \\
& \text { پـس از t ثانيـه ffm بـه يكديگـر نزديك شــدهاند. } \\
& v_{\text {vin }}=v_{1}+v_{r} \\
& d_{\text {نسبى }}=\left(v_{1}+v_{r}\right) t \Rightarrow f f=(\Delta+\mathcal{Y}) t \Rightarrow t=\frac{f 千}{q} s \\
& \text { گام سـوم: معادلــه حركـت يكـى از آنهـا (مثلاً A ) را مىنويسـيم و } \\
& \text { مـكان جسـمم را در لحظـــٔ } \mathrm{C}=\frac{f f}{q} \mathrm{~S} \text { مشـخص مىكنيم: } \\
& x_{A}=-\Delta t+r_{0}=-\Delta \times \frac{\mu q}{q}+r_{0}=\frac{-r_{0}}{q} m
\end{aligned}
$$

## حركت با شتاب ثابت

حركتـى اسـت كــه در هــر بازءٔ زمانى يكســان، شـتاب متوسـط جسـما يكسـان و ثابت باشـد．

头 دلخواه برابر شتاب جسم در هر لحظه دلخواه و مقدار ثابتى است．

## 

## پرتاب در راستاى قائم

 بــراى بررسـى شــتاب جسـم دو حالت زيــر را ادر نظــر مى گییريم: الف اگر مقاومت هوا ناحيز باشد در اين حالت پس از پرتاب جسم فقط نيروى وزن بر جسم اثر مىیند:
$\overrightarrow{\mathrm{F}}_{\text {net }}=\mathrm{ma} \xrightarrow{\mathrm{F}=\mathrm{mg}} \mathrm{ma}=\mathrm{mg} \Rightarrow \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{g}}$
ت آمدن مقدارى ثابت و به طرف پايين است.

(®) تست: در شــرايطى كــه مىت تــوان از مقاومست هــوا صرفنظــر كــرد، جســم كوحیکــى را با ســـرعت طــرف بالا یرتـاب مى $\left(g=1 \circ \frac{\mathbf{N}}{\mathbf{k g}}\right)$ چند متر بر ثانيه است؟ rolr $\quad 10(r \quad \operatorname{lor} \quad \Delta(1)$ (1) (1) (1)
 از ايـنـرو، مىتـوان از معادلــه ســرعت ـ زمــان در حركــت بـا شــتاب ثابـت يعنــى V = $=$ اسـتماده كرد و بـا انتخــاب جهت مثبت
 $t=1 / \Delta s s^{a}=-\mathrm{g}=-1 \circ \mathrm{~m} / \mathrm{s}^{r}$ $\mathrm{v}=-1 \circ \times 1 / \Delta+r_{0}=\Delta \mathrm{m} / \mathrm{s}$ بهدست آورد:

ب اگر مقاومت هوا ناچیيز نباشد
ه نير نيرويى است كه از شاره بر جسم در حال حركت وارد مىشود. چ نكتهها: 1 نيروى مقاومت شاره همواره در خلاف جهت حركت جسماست. r نيروى مقاومت شاره به بزرگی جسم و تندى آن بستگى دارد.

 سرعتش افزايش مى يابد و سپس به سرعت ثابتى (تندى حدى) مىرسد.

اگر جهت رو به بالا رو باعلامت مثبت در نظر بگيريمه، براى حالتهايى كه
جسم به طرف بالا يا به طرف پايیين حركت كند، مىتوان نوشت: (1) اگـر جسـمم به طــرف بالا حركت كنــد، نيروى مقاومت هــوا به طرف پايين است.

$$
\text { | } \underset{\vec{f} \downarrow \mid}{ }-m g-f_{D}=+m a \Rightarrow a=-\left(g+\frac{f_{D}}{m}\right)
$$

(P) اگـر جسـم بـه طــرف پايين حركـت كنـد نيــروى مقاومت هـوا به


## فصل دوم (3) مهروماه

$$
\begin{aligned}
& \text { 目 } \\
& f_{D}=m g \Rightarrow a=0 \quad \text { برابر صفر مىشود. }
\end{aligned}
$$

> (برگرفتهاز كتابدرسى) $(\mathrm{g}=1 . \mathrm{N} / \mathrm{kg})$
> $\mathrm{a}=\mathrm{g}-\frac{\mathrm{f}_{\mathrm{D}}}{\mathrm{m}}=10-\frac{r_{\mathrm{o}}}{\omega} \Rightarrow \mathrm{a}=9 \mathrm{~m} / \mathrm{s}^{r}$
> $\Delta \times 10-r_{0}=\Delta a \Rightarrow a=9 \mathrm{~m} / \mathrm{s}^{r}$

## تعادل ايستايى

اگر جسمى در حال سكون باشد برآيند نيروهاى وارد بر جسم صفر است.
$\mathrm{F}_{\text {net }}=\circ \Rightarrow\left\{\begin{array}{l}\Sigma \mathrm{F}_{\mathrm{x}}=\circ \\ \Sigma \mathrm{F}_{\mathrm{y}}=\circ\end{array}\right.$

## امواج مكانيكى

四 (موج) مى كند و هر موج انرثى چششمه موج را منتقل مى كندا

اين آشفتگى و تغيير شكل، تپ مى گوييم.
 بين اجزاى ريسمان است.
 مى كند و ذرات محيط باموج پيشروى نمى كنند و فقط ار ارتعاش دارند.
 سينوسى توليدمىشود.

امواج عرضى

راستاى نوسان هر جزء فنر
 در امواج عرضى، جابهجايى هر جزء نوسان كنتدهاى از محيط انتشار موج (راستاى ارتعاش)، عمود بر جهت حركت موج (راستاى انتشار) است. امواج طولى در امــواج طولـى، جابهجايـى هر جـز نوسـانـكنـندهاى از محيط انتشـار راستاى نوسان مـوج (راستــاى ارتــعاش)،

 (راسـتاى انتشـار) اسـت.

## فصل سوم (3)

(1) تست: در شــكل زيــر با بــه ار تعاش در آمــدن ديایـازون در فنر
 با ارتعاش دياپازون و چپپ و راسـت شــدن شـاخههاى آن، نوسـانات در فنــر (1) ، عمــود بــر راسـتـاى فنــر و در فنــر (Y) هممجهـت بـا
 فنــر (Y) مـوج طولـى خواهيم داشـتـ.

تشت موج


تشـت موج شـامل يك تشت شيــشهاى كمعمــق و يــى نوسانسـاز اسـت.

> 罒 نوسان در آوريم، موج تخت بر سطح آب تشكيل مىشود.




دياپیون
 اسـت كه با ضربه زدن به آن، شـاخههایى آن حركت نوسـانى هماهنگگ سـاده انجـام مىدهنـد.
 مشخصههاى موج شـكل زيـر طــرح سـادالى از يكـ مـوج عرضى كه در سـطـح آب تشـت مـوج ايجاد شــده اسـت را نشــان مىدهد.


قله و دره
به برآمدگى ايجادشده در موج قله (ستيغ) و به فرورفتگىهاى آن، دره (پاستيغ)مى گويند.

فصل سوم

دامنه (A) بيشـترين فاصلــه يـــ ذره از مكان تعـادل (سـطح آرام آب) دامنئ موج

ناميده مىشـود.
دورهُ تناوب (T)
مــدت زمانىكــه هــر ذرهٔ محيــط يــى نوسـان كامــل انجـام مىدهد را دوره́ تنـاوب مىنامنــد. دوره تناوب موج همان دورهٔ تناوب چشـــمهٔ موج اسـت و بــه محيط انتشـار موج بسـتتگى ندارد.
(f) بسامد

تعـداد نوسـانههاى انجـام شــده توسـط هــر ذرهٔ محيـطـ در يــــ ثانيــه بسـامد موج ناميده مىشـود كه برابر با بســامد چشــمهٔ موج نيز هسـتـ.

$$
f=\frac{1}{\mathrm{~T}}
$$

-اگر چشـمهه يا هر ذرهٔ محيط انتشــار موج در مدت t ثانيه n نوسـان

$$
\mathrm{T}=\frac{\mathrm{t}}{\mathrm{n}}, f=\frac{\mathrm{n}}{\mathrm{t}}
$$

كامل انجام دهد، داريم:

بسامد زاويهاى (ف)
بسـامد زاويــالى مـوج برابــر بــا بســامد زاويهاى چشـمـهٔ موج اســت و از رابطـءٔ $\omega=\frac{r \pi}{T}=r \pi f$ بهدسـت مى آيـد.

تندى انتشار موج (v)
اگـر جبهــهٔ مـوج در مدت $\Delta t$ ، مســافت L , اطـى كند، تندى انتشـار مـوج از رابطءٔ v=

ت تكتهها: 1 تنــدى انتشـار مـوج مسـتقل از دامنـه، بسـامد و دوره
 بسـتگى دارد و بــراى يـــى محيط يكنواخـت و همگگن، تندى انتشـار موج ثابت است. r r تندى انتشـار موج در سـطح آبهاى كمعمق، به عمق آب بسـتگى دارد و با افزايش عمق آب، تندى انتشار موج افزايش مى يابد.
(®) تست: معادلــهٔ نوسـان چشــمهٔ موجـى در SI بهصـورت اسـست. دامنه و بســامد ايــن موج بسه ترتيب از راست به چֶپ چند واحد SI است؟


معادله نوسان حركت هماهنگ ساده بهصورت x = A cos $\omega t$ است: $x=r \cos (\omega \circ \pi \mathrm{t}) \Rightarrow \mathrm{A}=r \mathrm{~m}, \omega=\omega \circ \pi \xrightarrow{\omega=r \pi f}$
$r \pi f=\omega \circ \pi \Rightarrow f=r \Delta \mathrm{~Hz}$
دامنه و بسامد موج برابر با دامنه و بسامد چشمه است.


$$
\begin{aligned}
& \text { و تندى انتشار آن بهترتيب از راست به چپپ چند برابر مىشوه؟ } \\
& 1 . \frac{1}{r}(r \\
& \text { l.r(1 } \\
& \frac{1}{r} \sqrt{r}(f \\
& \text { r.l (r }
\end{aligned}
$$

فصل چهارم (3) مهروها
برخورد يֶرتو با چندين آينه

 داخلـى مثلـث برابر بـا 1 ا و مجموع زوا



 سطح آن آينه، زاويهٔ چنـد در جه مىسازن؟

$$
1 \circ(1
$$

$$
r \circ(r
$$

$$
V \circ(\Gamma
$$

$$
\Lambda_{0}(f
$$


مانند شكل مسير پرتو را رسم مى هنيم:
$\Delta$
Q ، زاويؤ خارجى مثلث ABO هاست:

$$
\theta=40^{\circ}+r_{0}^{\circ}=10^{\circ}
$$


چند درجه است؟

$$
\begin{aligned}
& 11 \circ(1 \\
& 1 r \circ(r \\
& 1 r \circ(r \\
& 10 \cdot\left(Y^{4}\right.
\end{aligned}
$$

(3) مرور سريع فيزيك كنكور
(T) |(T)

مسـير پرتـوى نـور در ايـن مجموعـه مانند شـكل زير اسـتـ. از دو
 نكته استفاده مى كنيم:
(1) اويــهٔ پرتـوى تابـش با سـطح آينـه برابر بـا زاوئه پرتــوى باز تابش

با سطح آينه است.
 چهارضلعى

داخلى يك مثلث 1 \ است.

$$
\begin{aligned}
& \beta+1 \mathrm{r}^{\circ}+1 \mathrm{r}^{\circ}+90^{\circ}=r 90^{\circ} \Rightarrow \beta=90^{\circ} \\
& \alpha=110^{\circ}-\beta=110^{\circ}-90^{\circ} \Rightarrow \alpha=1 \circ^{\circ}
\end{aligned}
$$

انواع موج بازتابيده از موانع نــــع مــوج بازتابيــده از موانـع مختـلـف بســتـه بــه نوع مــوج و نــوع مانع يكـى از دو حالـت زير اسـت:
 مـوج تخــت بهصـورت تخــت و مـوج دايـرمالى بهصــورت دايـرماى باز مىتابد.
P
 حالتهاى مختلفى دارد.

## فصل چهارم (3) مهروماه



شكست موج
در طنابى مانند شكل زير كهاز دو بخش ناز كـ و وضخيم تشكيل شدهاست، تهی از سمت بخش نازك به مرز دو بخش میرسد:


 كرده و وارد طناب ضخيم مىشود.
 $\frac{\lambda_{r}}{\lambda_{1}}=\frac{v_{r}}{v_{1}}$ و اينكه f همواره ثابت است، داريم:

يعنى،در هر محيطى كهتندى انتشار بيشتر است،طول موجنيز بيشتر است. نيـروى كشـش در هـر دو طنــاب را يكســان در نظــر مى گیيريــمر واز رابطdٔ تندى انتشار مربع در طناب $\frac{\lambda_{r}}{\lambda_{1}}=\frac{v_{r}}{v_{1}}=\sqrt{\frac{\mu_{1}}{\mu_{r}}}=\sqrt{\frac{L_{r}}{L_{1}} \times \frac{m_{1}}{m_{r}}}=\sqrt{\frac{\rho_{1}}{\rho_{r}} \times \frac{A_{1}}{A_{r}}}=\frac{d_{1}}{d_{r}} \sqrt{\frac{\rho_{1}}{\rho_{r}}}$
 $\qquad$ است. سطح مقطع طناب r ، B برابر سطح مقطع طناب A A و حگَالى



## فصل پنجم (3) مهروماه

$$
\begin{aligned}
& \mathrm{K}_{\text {max }}=\mathrm{h} f-\mathrm{W}_{\mathrm{o}} \xrightarrow[f=\frac{\mathrm{c}}{\lambda}]{\mathrm{W}_{0}=\frac{\mathrm{hc}}{\lambda_{\mathrm{e}}}} \\
& K_{\max }=\frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}=\frac{I r_{0}}{r_{0}}-\frac{r r_{0}}{r_{0}} \\
& \Rightarrow K_{\max }=\varepsilon / r-r=r / r e V
\end{aligned}
$$

ويثرْرياضى


نـــودار بيشــينئ انـرثى فوتوالكترونها
 افزايشبسامدفرودى (f) سببافزايش بيشينئ انرزى فوتوالكترونها مى شود


نـــودار بيشـينئ انـرثى فوتوالكترونهـا بـر حسـب طـول مـوج نــور فـرودى
(0) تست: در آزمايسش فوتوالكتريـــ، تابع كار فلــزى كه فوتونها
 جنبشــى فوتوالكترونها بر حســب بســامد نور فرودى بــر اين فلز،





(1) (1)

بــراى تشـخخيص نمــودار، بايــد بســامد آسـتانة فلــز معلــوم باشــد.
 $\mathrm{K}_{\text {max }}(\mathrm{eV})$
فلز را حساب مى كنيم:
$\int_{\Delta_{00}} f_{(\mathrm{THz})} \quad \mathrm{W}_{0}=\mathrm{hf} \xrightarrow[\mathrm{h}=\mathrm{r} \times 10^{-1 \Delta} \mathrm{eV} . \mathrm{s}]{\mathrm{W}_{0}=\mathrm{eV}}$
$r=r \times 10^{-1 \Delta} \times f_{0} \Rightarrow f_{0}=\omega_{0} \times 10^{1 r} \mathrm{~Hz}$
$\xrightarrow{1 .{ }^{1 \mathrm{r}} \mathrm{Hz}=1 \mathrm{THz}} \mathrm{f}_{0}=\omega_{0} \circ \mathrm{THz}$
دقت كنيد، ترا (T) پیيشوندى است كه مقدار آن ז٪ 1 است.
بنـا بـه رابطــه | نمودارى را انتخاب كنيم كه طول از مبدأ آن foro

## فصل پنجم (3) مهروماه

نمودار شعاع مدارهاى الكترون و نكتههاى آن: (1) هــر قــــر شــعاع مــدار الكتـرون
 متوالى بيشتر مى شود.

 $\left\{r_{1}, \forall r_{1}, \Delta r_{1}, \nu r_{1}, \ldots\right\}$

طيف جذبى
اكر بخار يك عنصر در حالت سرد و فشار كم و رقيق، در مسير پرتو ري نور

flofyt fis sas
( تصاعد حسابى را تشكيل مىدهنـند و وري قدر نسبت تصاعد برابر


目 انرثى توسط الكترون اتم و انتقال الكترون به تراز ازهاى بالاتر استى است r طيف جذبى هر عنصر دقيقاً منطبق بر طيف گسيلى اتم است است.
 || خطـوط طيف جذبـى اتم هيــرورثن را مىتوتوان با مــدل اتمى بور توجيه كرد.

ه در پديدهٔ جذب فوتون، اتم، فوتون تابيده شده به آن را جذب مى كند و الكترون از ترازهاى پايينتر انرزى به ترازهاى بالاتر مىرود. flofry f19 909


$$
\mathrm{nm}
$$

\& انرزى جذبشده توسط الكترون هنگام جابهجايى از تراز انرزى پايينتر به تراز انرزى بالاتر دقيقا برابر اختلاف همان دو تراز انرزى است.



ك كرديم، برعكس آنها براى جذب الكترون صدق مى

(الف) فرايند گسيل فوتون

(ب) فرايند جذب فوتون توسط اتم

## طيف جذبى خورشيد

خطوط تاريكى در طيف خورشيدنشانگر جذب شدن برخى طول مور موجهاى پرتوهاى خورشيد در اتمسفر خورشيد و جو زمين است.



## بيوست

## ColiJgote



## $\mathbf{K}_{\text {max }}=\mathbf{h} f-\mathbf{W}$ 。

تار W. تار فلـع اسـت و كمتريـن مقـدار انـرثى يـا كار لازم بـراى خارج كردن يك الكترون از فلز مىباشد.

ويثرٔرياضى بسامد آستانهُ فوتوالكترونها (W)
$f_{0}=\frac{W_{0}}{h}$

- بـهازای .f $f$ پ نور فرودى افزايش يابد.


$$
\lambda_{0}=\frac{\mathrm{ch}}{\mathrm{~W}_{0}}
$$

است با:
$\lambda=(r g q / \Delta g n m) \frac{n^{r}}{n^{r}-r^{r}}$
معادالهُ بالمر هR

هـ معادلهُ ريدبرگ
$\frac{1}{\lambda}=\mathbf{R}\left(\frac{1}{\mathbf{n}^{\prime r}}-\frac{1}{\mathbf{n}^{r}}\right) \quad \mathbf{n}>\mathbf{n}^{\prime}$
R $\mathrm{R}=0 / 0| |(\mathrm{nm})^{-1}$.
-بهازاى
 Fه شعاع مدارهاى الكترون در اتم هيدروثن $r_{n}=\mathbf{a}_{0} \mathbf{n}^{r}$
a اســت و شـعاع اتـم بـور بــراى اتـم هيدروثن ناميده مىشود.

ريوست（3）مهروه
ترازهاى انرثى الكترون در اتم هيدروثن هV

$$
\mathbf{E}_{\mathbf{n}}=\frac{-1 r / 9 \mathrm{ev}}{\mathbf{n}^{r}}=\frac{-\mathbf{E}_{\mathbf{R}}}{\mathbf{n}^{r}}
$$

بـهازای n＝1
 حالتهاى برانگیخته است． ه\ ه معادلهُ گسيل فوتون از اتم

$$
\mathbf{E}_{\mathbf{U}}-\mathbf{E}_{\mathbf{L}}=\mathbf{h} f
$$

－اختلاف دو تراز انرزى برابر انرزى فوتون تابشى از اتم است．

$$
N=\frac{n(n-1)}{r}
$$

－تعداد فوتونهاى تابشى ممكن براى تراز

هQه رابطهُ اينشتين

$$
\mathbf{E}=\mathbf{m} \mathbf{c}^{r}
$$

（c＝9×1．${ }^{\wedge} \mathrm{m} / \mathrm{s}$ ）
\％

$$
{ }_{\mathbf{Z}}^{\mathbf{A}} \mathbf{X} \rightarrow{\underset{\mathbf{Z}}{-r}}_{\mathbf{A}-\boldsymbol{r}} \mathbf{y}+{ }_{r}^{\boldsymbol{r}} \mathbf{H e}
$$

（9）وا夂اشى

$$
{ }_{\mathbf{Z}}^{\mathbf{A}} \mathbf{X} \rightarrow \underset{\mathbf{Z}+1}{\mathbf{A}} \mathbf{y}++_{-1}^{\circ} \mathbf{e}^{-}
$$

ब두 وا夂اشى

$$
\underset{\mathbf{Z}}{\mathbf{A}} \mathbf{X} \rightarrow \mathbf{Z}_{\mathbf{Z}-1}^{\mathbf{A}} \mathbf{y}+; \mathbf{e}^{+}
$$

（گّ

$$
{ }_{\mathbf{Z}}^{\mathbf{A}} \mathbf{X}^{*} \rightarrow_{\mathbf{Z}}^{\mathbf{A}} \mathbf{X}+\gamma
$$

。 عدد جرمى فقط در واپاشى آلفا تغيير مىكند．

