كام دوم به كمك حجم مايع بالا آمده درون استوانه، حجم ظاهرى جسمر را بهدست میآوريهز：

كام سوم اختلاف حجم ظاهرى جســـمر و حجم فلز يرابير با حجم حقرة درون
جسمأست：
$V_{0, ~}^{0, ~}=1.0-\lambda_{0}=r_{0} \mathrm{~cm}^{r}$
$\rho=\frac{m}{V_{+}} \Rightarrow . / \Lambda=\frac{19_{0}}{V_{+}} \Rightarrow V_{+}=r_{\ldots} \mathrm{cm}^{r}$

 آن（rR）قاريهّ

$\xrightarrow{\mathrm{V}_{\mathrm{A}}=r \ldots \mathrm{~cm}^{r}} \frac{V_{\mathrm{s}}}{r_{\ldots \ldots}}=r \Rightarrow V_{\mathrm{s}}=9 \ldots \mathrm{~cm}^{r}$
 $\mathrm{W}=\mathrm{W}_{+}+\mathrm{W}_{\mathrm{s}} \xrightarrow[\mathrm{W}_{\mathrm{s}}=\mathrm{m}_{\mathrm{s}} \mathrm{g}]{\mathrm{W}_{\mathrm{g}}} \mathrm{V}_{0}=\mathrm{I} / 9 \times 10+\mathrm{m}_{\mathrm{s}} \times 1$.
$\Rightarrow \mathrm{m}_{\mathrm{s}}=\Delta / \mathrm{kg}=\Delta \psi_{\circ \cdot \mathrm{g}} \Rightarrow \rho=\frac{\Delta f_{\circ}}{q_{0} \cdot 0}=. / q \mathrm{~g} / \mathrm{cm}^{r}$
（F）
كام اول البتدا حجم ظاهرى و حجمر واقعى كره را به دست مىآوريهi ：ححم ظاهرى كره ：V $=\frac{r}{r} \pi r^{r}=\frac{r}{r} \times r \times(\Delta)^{r}=\Delta . . \mathrm{cm}^{r}$

كام دوم نسبت حجمه حقره به حجم ظالهرى براير است با
＝$=0 . .-\mathrm{f} \cdot .=1 . . \mathrm{cm}^{r}$

（7）If
 ＝$a^{r}-\frac{F}{r} \pi r^{r}$ $\Rightarrow V_{\text {关 }}=(\Delta)^{r}-\frac{r}{r} \times r \times(r)^{r}=1 r \Delta-1 \cdot \lambda=1 \mathrm{Vcm}^{r}$ گام دوم جرم مكعب فلزى برابر است با：

كام سوم با داشُتن حجم حفرة كروى（
جرم روغن داخل حقره و در نتيجه جرم كل را حساب كرد．

（\％ 10
كام اول

كام دوم اكتون جرم الكلى را كه ازَ ظرف بيرون میريزد به دست مىآوريه：
$\rho_{ل ك ا}=\frac{m_{ل ك}}{V} \Rightarrow$ الك．0g $/ L=\frac{m}{. / \Delta L} \Rightarrow m=f \circ \mathrm{~g}$

است، مىتوان نوشت：

（V）AV

حجم مخلوط مواجهيمן：در نتيجه با الستقاده أز رابططه چچكالى مىتوان نوشت： $\rho=\frac{m}{V} \Rightarrow V=\frac{m}{\rho} \Rightarrow V_{r}-V_{1}=m\left(\frac{1}{\rho_{r}}-\frac{1}{\rho_{1}}\right)$
$\Rightarrow-\Delta=m\left(\frac{1}{1}-\frac{1}{. / q}\right) \Rightarrow m=\psi \Delta g$
SA

ظرف را و ازز معايسهُ جرم دو مايع داريهم：

$\Rightarrow \rho_{\text {家 }}=\frac{F}{\Delta} \mathrm{~g} / \mathrm{cm}^{r} \times\left(\frac{1 \ldots 0 \mathrm{~cm}^{r}}{\mid \mathrm{L}}\right)=\Lambda \circ \cdot \mathrm{g} / \mathrm{L}$
（4）A
كام اول حجم واقعى جسمه برابر استٍ بال：
$\mathrm{V}_{\text {抽 }}=\frac{\mathrm{m}}{\rho}=\frac{\gamma \cdots \mathrm{g}}{\mathrm{r} / \Delta \mathrm{g} / \mathrm{cm}^{r}}=\lambda_{\cdots} \ldots \mathrm{cm}^{r}$
$V_{C=10.8}=10^{r}=1 \ldots \mathrm{~cm}^{r}$
كام دووم حجم حقره راحساب مىكتيه｜
$V_{0, ~}=1 \ldots-\lambda_{0}=r_{\ldots} \mathrm{cm}^{r}$
（74is）9．

آن（با رابطلة حجم مكعب V＝ar
تحثّالى
：حجمظظاهرى：V＝ $\mathrm{a}^{r}=1 .^{r}=1 \ldots \mathrm{~cm}^{r}$
．$\rho=\frac{\mathrm{m}}{\mathrm{V}^{\prime}} \Rightarrow \lambda=\frac{\rho \cdot \ldots}{\mathrm{V}^{\prime}} \Rightarrow{V^{\prime}}^{\prime}=\mathrm{v} \Delta \cdot \mathrm{cm}^{r}$

داخل مكعب حفره وجود دارد و حجم حغره برابر است باي $V_{0 \text { 宜 }}=1 \ldots-V \omega_{0}=r \Delta_{0} \mathrm{~cm}^{r}$
（W） 1
كآم اول به كمك ，إلطلة
$\rho=\frac{\mathrm{m}}{\mathrm{V}} \Rightarrow \mathrm{V}=\frac{\mathrm{m}}{\rho}=\frac{\psi_{\bullet}}{\Delta}=\lambda_{0} \mathrm{~cm}^{r}$

مويين در آب اثرى در ار تفاع آب درون لوله ندارد. ي) سططح جيوه در لوله مويين

 .JVP

 IVA

 لالIV9

 أســت: أز أين رو در مححل تماس جيوه با ظارف، سملح جيوه برآمهه خواهد بود.

 قر IVA
 عمودى وارد بر سطلح براير :جرمج $\mathrm{m}_{\boldsymbol{Y}} \quad$: m_{1}
لوالد
pga تلl $:$: $\mathrm{P}_{\mathrm{Y}}=\frac{\left(\mathrm{m}_{1}+\mathrm{m}_{Y}\right) \mathrm{g}}{\mathrm{A}}$
$\Delta P=P_{r}-P_{1}=\frac{m_{r} g}{A}=\frac{A \cdot 0}{r \cdot \times r \cdot \times 10^{-r}}$
$\Rightarrow \Delta P=r \times 1 .{ }^{\dagger} \mathrm{Pa}=\mathrm{r} \cdot \mathrm{kPa}$
(tion
 كتيهر تالختالف فشار را به دست آوريهـ.

در هر حالت فشار وارد بر سطلح مورد نظر را بهدست مىآوربيم: $\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}} \xrightarrow{\mathrm{F}=\mathrm{mg}} \mathrm{P}=\frac{q \cdot \times 1 \cdot}{r \times r_{0} \times 10^{-r}} \Rightarrow \mathrm{P}=1 / \Delta \times 1 . \Delta \mathrm{Pa}$
$\left.P=\frac{F}{A}=\frac{q \cdot \times 1 \cdot \cdot \times x) \cdot}{r \times r} \Rightarrow P=1 / \Delta x\right) \cdot \Delta \mathrm{Pa}$
$P=\frac{F}{\mathrm{~A}}=\frac{. / 1}{. / \Delta \times 10^{-9}} \Rightarrow P=r \times 1 . \Delta \mathrm{Pa}$
با مقايسه فشارها مى توان دريافت در فسمت (ي) فشار بيشتر استد.

 199. 199

 (194 191

 199.
 .IV.

${ }^{T_{1}}{ }^{T_{r}>T_{1}}{ }^{T_{T}}$

 كثش سطحى بيشترى براى حفظ اين يو ايوسته بايد

 فَطر هماى مايع كوجحكتر مىششوند.

(W).|VT

 لوله كه بالا رفتّه استّه اثر مى كتد و وبه طرف بالا بالاست.
 تشان مىدیهيم واين نيروى برايتد براير ورتن آب

بالا رفتّ نرون لوله موبين است

 $\left\{\begin{array}{l}K_{1}=\frac{1}{r}(r m) v^{r}=m v^{r}, \quad K_{r}=\frac{1}{r} m(r v)^{r}=r m v^{r} \\ K_{r}=\frac{1}{r} \times \wedge m\left(\frac{v}{r}\right)^{r}=m v^{r}, K_{r}=\frac{1}{r} \times r m(r v)^{r}=r m v^{r}\end{array}\right.$
$\Rightarrow K_{Y}>K_{Y}>K_{Y}=K_{Y}$
فتـ فتط اندازءُ سـرعت جسمر (تتدى) مهيم است.
(1dijs).rat
"
$K=\frac{1}{r} m v^{r} \Rightarrow \frac{K_{r}}{K_{1}}=\left(\frac{m_{r}}{m_{1}}\right) \times\left(\frac{V_{r}}{V_{1}}\right)^{r} \quad$ استقاده كتيهـ:

K $\mathrm{K}=\frac{1}{r} m v^{r}$ محاسبه میشود،
در نتّتجه مىتوتون نوشت
$\frac{\mathrm{K}_{Y}}{\mathrm{~K}_{1}}=\frac{\mathrm{m}_{Y}}{\mathrm{~m}_{1}} \times\left(\frac{\mathrm{v}_{Y}}{\mathrm{v}_{1}}\right)^{r} \xrightarrow[\mathrm{v}_{1}=\mathrm{F} \mathrm{m} / \mathrm{s}, \mathrm{m}_{\mathrm{T}}=\mathrm{m}_{\mathrm{T}}]{\mathrm{K}_{\mathrm{K}}=\mathrm{FJ}, \mathrm{K}_{\mathrm{r}}=\Delta \mathrm{J}} \frac{\Delta}{\mathrm{F}}=\left(\frac{\mathrm{V}_{Y}}{\psi}\right)^{r}$

(V) WAF

 $K=\frac{1}{r} m v^{r} \Rightarrow \frac{K_{B}}{K_{A}}=\left(\frac{V_{B}}{V_{A}}\right)^{r}=\left(\frac{r_{0}}{1 \ldots 0}\right)^{r}=r$
(YAD
 $\Delta K=K_{r}-K_{1}=\frac{1}{r} m v_{r}^{r}-\frac{1}{r} m v_{1}^{r}=\frac{1}{r} m\left(v_{r}^{r}-v_{1}^{r}\right)$
$\xrightarrow[\Delta \mathrm{K}=+1 \Delta \mathrm{~J}]{\mathrm{v}_{\mathrm{r}}=\Delta \mathrm{m} / \mathrm{s}, \mathrm{v}_{1}=\mathrm{m} / \mathrm{s}} \left\lvert\, \mathrm{A}=\frac{1}{r} \mathrm{~m}\left(\Delta^{r}-\mathrm{r}^{r}\right)\right.$
$\Rightarrow \| \wedge=\frac{1}{r} \mathrm{~m} \times 9 \Rightarrow \mathrm{~m}=\mathrm{rkg}$

$K_{1}=\frac{1}{r} m v_{1}^{r}=\frac{1}{r} \times \psi \times \psi^{r}=r r J$
 آن نيزَ حتمأ افزايش يافته الستح

$\Delta K=K_{r}-K_{1}=\frac{1}{r} m v_{r}^{r}-\frac{1}{r} m v_{1}^{r} \Rightarrow \Delta K=\frac{1}{r} m\left(v_{r}^{r}-v_{1}^{r}\right)$

 $\frac{\mathrm{F}(\mathrm{N})}{10^{r} \times 10^{-r}\left(\mathrm{~m}^{r}\right)}=\mid r / \Delta \times 1 \ldots \mathrm{~kg} / \mathrm{m}^{r} \times 1 \cdot \mathrm{~m} / \mathrm{s}^{r} \times 1 \cdot \times 10^{-r} \mathrm{~m}$ $\Rightarrow \mathrm{F}=\mathrm{Ir} \Delta \mathrm{N}$

$A_{1} v_{1}=A_{r} v_{r} \xrightarrow[A_{1}=\pi r_{r}^{r}]{A_{r}=\pi \pi_{r}^{r} \quad r=\frac{1}{r}} \pi \times 1^{r} \times r=\pi r_{r}^{r} \times \Lambda$
$\mathrm{r}_{\mathrm{Y}}=\frac{\sqrt{r}}{r} \mathrm{~cm} \Rightarrow \mathrm{~d}_{\mathrm{Y}}=\mathrm{rr}_{\mathrm{Y}}=\sqrt{\mathrm{r}} \mathrm{cm}$

مساحت سطح مقطع لوله رابطله عكس هارد، زيرلا
$A_{1} v_{1}=A_{\Gamma} v_{Y} \Rightarrow \frac{v_{1}}{v_{Y}}=\frac{A_{Y}}{A_{1}} \Rightarrow v \propto \frac{1}{A}$
همححنين طبق اصل برنولى مىیانيمر كه فـار با سرعت رابطله عكس دارد: $P \propto \frac{1}{V} \Rightarrow P \propto A$

 $h_{1}>h_{r}>h_{Y}$
(H2ij5).rv9

كام أول اطا(عات مسئله را برحسب واحدهاى SI مىتويسبه|: $\mathrm{m}=11^{\prime}=10^{r} \mathrm{~kg}$
$v=1 . \wedge \mathrm{km} / \mathrm{h} \xrightarrow{r / s} v=r \cdot \mathrm{~m} / \mathrm{s}$

> كام دوم لاز رإيطة انرزی جنبشى استقاده مى كتيه:
$K=\frac{1}{r} m v^{r}=\frac{1}{r} \times 10^{r} \times r 0^{r}=\frac{1}{r} \times 10^{r} \times 9.0=r 0 . \times 10^{r} \mathrm{~J}$
 كيلوزول خواسته الستا در نتّيجه داريمه: $K=\% \Delta \cdot \times 10^{r} J \times \frac{1 \mathrm{~kJ}}{1 . r J}=\% \Delta \cdot \mathrm{~kJ}$
(ra.
كام اولل مقادير مسئله برحسب واحدهاى SI آن SI أها عبارتند أز:
$\mathrm{m}=\Delta \cdot \mathrm{g}=\Delta \cdot \times 10^{-r} \mathrm{~kg}=\Delta \times 10^{-r} \mathrm{~kg}, \mathrm{~K}=1 \mathrm{~kJ}=10^{r} \mathrm{~J}$

$10^{r}=\frac{1}{r} \times \Delta \times 10^{-r} \times v^{r} \Rightarrow v^{r}=r \times 10^{r} \Rightarrow v=r \ldots \mathrm{~m} / \mathrm{s}$
 كام جهارم توان را ير حسب كيلووات محاسبه مىكتيه: $P{ }^{5}=1 .{ }^{\circ} \mathrm{W} \times \frac{1 \mathrm{~kW}}{1 .{ }^{r} \mathrm{~W}}=1 . \mathrm{kW}$
 $P=F v \Rightarrow\left\{\begin{array}{l}P_{r}=F_{r} v_{r} \\ P_{i}=F_{i} v_{r}\end{array} \Rightarrow \frac{P_{r}}{P_{r}}=\frac{F_{r}}{F_{1}} \times \frac{v_{r}}{v_{r}}\right.$
طبق اطلاعات مسئله مشخص است كه $\frac{P_{r}}{P_{1}}=r \times r=r$
(.1 9.

 (9.7
 روى آن كار النجام مىدهندن.
 جتبشى آن صفر استٍ. كام سوم: با استقاده از فَضيه كار و انرزّى كار النجام شُده توسط نيروى موتور

 $\mathrm{P}=\frac{\mathrm{W}_{\mathrm{F}}{ }_{\Delta, 0}}{\Delta \mathrm{t}}=\frac{\mid \Delta \times 1 *^{*}}{\Delta}=r \rho \times 1{ }^{r} \mathrm{~W}=r \varepsilon \mathrm{~kW}$
(14ijos) 9.7

$\mathrm{W}_{\mathrm{mg}}=-\mathrm{mg} \Delta \mathrm{h}=-\mathrm{V} \Delta \times 1 \cdot \times 1 . \Rightarrow \mathrm{W}_{\mathrm{mg}}=-\mathrm{V} \Delta \cdot . \mathrm{J}$
كام سوم كار كل انجام شُــه روى شخصص براير با مجموع كار شخص و كار $\mathrm{W}_{\mathrm{t}}=\mathrm{W}_{\text {Hing }}+\mathrm{W}_{\mathrm{mg}}$

نيروى وزن است:

النرزى جنبشى آن صعر است، با استقاده از تضضيه كار و اترزى مىتوان توشت:
$\mathrm{W}_{\mathrm{t}}=\Delta \mathrm{K} \xrightarrow{\Delta \mathrm{K}=.} \mathrm{W}_{\text {N }}+\mathrm{W}_{\mathrm{mg}}=. \Rightarrow \mathrm{W}_{\text {N }}=-\mathrm{W}_{\mathrm{mg}}$
$\xrightarrow{\mathrm{W}_{\text {mg }}=-\mathrm{V} \Delta \ldots \mathrm{J}} \mathrm{W}_{\text {N }}=\mathrm{V} \Delta \cdot . \mathrm{J}$
(10).

$\Delta \mathrm{K}=\mathrm{K}_{r}-\mathrm{K}_{1}=\frac{1}{r} \mathrm{mv}_{r}^{r}=\frac{1}{r} \times r \times 10^{r}=10.0 \mathrm{~J}$
كام دوم طبق ثايستّى اترزیى، كار نيروهاى مقاوم در مقابل حركت جسمه به
صورت زير محاسبه مىشود:
$\mathrm{W}_{f}=\Delta \mathrm{K}+\Delta \mathrm{U}_{\mathrm{g}} \xrightarrow{\Delta \mathrm{K}=1 \ldots \mathrm{~J}} \mathrm{~W}_{f}=1 \ldots+\Delta \mathrm{U}_{\mathrm{g}}$
چجون كار نيروهاى مقاوم حتمأ يك عدد منقى الست، بتابراين: $\mathrm{W}_{f}<\cdot \Rightarrow 1{ }_{0}+\Delta \mathrm{Ug}<0 \Rightarrow \Delta \mathrm{Ug}<-1.0 \mathrm{~J}$

جابهجايى برابر است با:
$\mathrm{W}_{\mathrm{mg}}=-\Delta \mathrm{U}_{\mathrm{g}} \Rightarrow \Delta \mathrm{U}_{\mathrm{g}}=-\mathrm{W}_{\mathrm{mg}} \xrightarrow{\Delta \mathrm{U}_{\mathrm{g}}<-1 \cdot .}$
$=-\mathrm{W}_{\mathrm{mg}}<-1.0 \Rightarrow \mathrm{~W}_{\mathrm{mg}}>1.0$
 النرزى بتانسيل تكرانشیى اتتخاب مى كتيهر و الرزیى

$h_{1}-1-m$ $E_{1}=U_{1}+K_{1}=m g h_{1}+\frac{1}{r} \mathrm{mv}^{r}{ }^{r}$
(r) $\downarrow \vec{v}_{r} \quad E_{1}=* /\left|\times 1 * \times 1 *+\frac{1}{r} \times \cdot /\right| \times r_{r}^{r}=1 \cdot / r J$ $\mathrm{E}_{\mathrm{r}}=\hat{U_{r}}+K_{r}=K_{r}$

$\mathrm{W}_{f}=\mathrm{E}_{\mathrm{r}}-\mathrm{E}_{1} \xrightarrow{\mathrm{~W}_{f}=-\mathrm{rJ}}-\mathrm{r}=\mathrm{K}_{\mathrm{r}}-\mathrm{I} \cdot / \mathrm{r} \Rightarrow \mathrm{K}_{\mathrm{r}}=\mathrm{A} / \mathrm{rJ}$
(F4) 414
 $\sin \left(r_{+}{ }^{\circ}\right)=\frac{h}{1 r} \Rightarrow \frac{1}{r}=\frac{h}{1 r} \Rightarrow h=\rho m \quad$ محاسبه میكتيهر

$E_{1}=U_{1}+K_{1}=m g h+\frac{1}{r} m v_{1}^{r}=r \times 1 * \times s+\frac{1}{r} \times r \times \Delta^{r}=\mid r \Delta J$
$\mathrm{E}_{\mathrm{r}}=\mathrm{U} / r+\mathrm{K}_{r}=\bullet+\frac{1}{r} \mathrm{mv}_{r}^{r}=\frac{1}{r} \times r \times \lambda^{r}=\rho \mathrm{F} \mathrm{J}$

(Y8) 199
كام اول تتدى ثانويه اتومبيل راز
$\mathrm{v}_{\mathrm{r}}=\mathrm{\gamma rkm} / \mathrm{h} \xrightarrow{\mp \mathrm{r} / \mathrm{s}} \mathrm{v}_{\mathrm{Y}}=\mathrm{r}_{0} \mathrm{~m} / \mathrm{s}$

كام سوم با تقسيم كار اتومبيل بر مدت زمان انجام كار، توان متوسط اتومبيل
رامحالسبه مىتكيهز

$$
\begin{aligned}
& \int \text { جرم كل يخ: } \mathrm{m}_{\gamma}=1.0 \mathrm{~g}=. / \mathrm{kg} \\
& \text { : جرم يخ ذوبشره: } \mathrm{m}_{\mathrm{Y}}^{\prime}=\Delta . \mathrm{g}=. / . \Delta \mathrm{kg} \\
& 之\left\{\begin{array}{l}
\theta_{Y}=-1 .{ }^{\circ} \mathrm{C} \\
\mathrm{c}_{\mathrm{Y}}=\mathrm{r}_{\ldots} \ldots \mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \\
\mathrm{~L}_{\mathrm{F}}=\mathrm{r}_{\ldots} \ldots \mathrm{J} / \mathrm{kg}
\end{array}\right.
\end{aligned}
$$

$Q_{1}+Q_{\gamma}+Q_{\gamma}^{\prime}=。 \Rightarrow m_{1} c_{1}\left(\theta-\theta_{1}\right)+m_{\gamma} c_{\gamma}\left(\theta-\theta_{Y}\right)+m_{r}^{\prime} L_{F}=。 \Rightarrow$

$\Rightarrow-r r_{0} \theta_{1}+r_{\ldots}+1 \Delta \ldots=\circ r r_{\cdot} \theta_{1}=1 r_{\ldots} \Rightarrow \theta_{1}=\omega_{0}{ }^{\circ} \mathrm{C}$
．ATT بخار را تبخير میناميّهـ
ATY
 ATP

 ArA （ب）Q

 دماى ذوب آنها را بالا مى يرد． مو9（\％AT9

 ．

 ATA
 و مولكولمهاى سطح آب با كُرفتن كَّرماى Q Q

 را انيز مشاهـهمه مىكتيد． AT9
 بتابراين مىتوان نوشت：

$\mathrm{Q}=\mathrm{Q}_{\mathrm{V}} \Rightarrow \mathrm{mc}|\Delta \theta|=\mathrm{m}^{\prime} \mathrm{L}_{\mathrm{V}} \xrightarrow\left[\mathrm{L}_{\mathrm{V}}=\mathrm{r} / \mathrm{Fk} \cdot\left|\cdot{ }^{*} \mathrm{~J} / \mathrm{kg},|\Delta \theta|=1^{\circ} \mathrm{C}\right]{\mathrm{m}=\mathrm{kg}, \mathrm{J}}\right.$

（F）AT．
$\mathrm{Q}=\mathrm{mL}_{\mathrm{F}}+\mathrm{mc} \Delta \theta$
：برابر است با：Vo C

است را آب نمىتواند تأمين كتد، لنا هخلوطى آز آب و يخ داريم كه دهاى تعادل

با $\left\{\begin{array}{l}m_{1}=m \\ c_{1}=c_{4} 1 \\ \theta_{1}=r_{0}{ }^{\circ} \mathrm{C}\end{array} \quad \therefore\left\{\begin{array}{l}m_{Y}=m \\ L_{F}=\Lambda_{0} c_{4} 1 \\ \theta_{Y}={ }^{\circ} \mathrm{C}\end{array}\right.\right.$
$Q_{1}=m_{1} c_{1}\left(\theta-\theta_{1}\right) \Rightarrow Q_{1}=m \times c_{1} \times\left(0-r_{0}\right)=-r \cdot m c_{1}$
$Q_{Y}=m_{r} L_{F} \Rightarrow Q_{Y}=m \times N \cdot c_{T l} \Rightarrow Q_{Y}=\Lambda \cdot m_{l}$

$Q_{1}+Q_{Y}=. \Rightarrow m_{1} c_{1}\left(\theta-\theta_{1}\right)+m_{Y}^{\prime} L_{F}=$ 。
$\Rightarrow \mathrm{m} \times \mathrm{c}_{\mathrm{C}}\left(0-r_{0}\right)=\mathrm{m}_{\gamma}^{\prime} \times \wedge_{0} \mathrm{c}_{\mathrm{C}}$
$\Rightarrow r \cdot m=\lambda \cdot m_{r}^{\prime} \Rightarrow m_{r}^{\prime}=\frac{r}{\Lambda} m$
بتابراين

$Q_{1}=m_{1} c_{1}\left(\theta-\theta_{1}\right) \frac{\theta={ }^{\circ} \mathrm{C}, \mathrm{m}_{1}=\Delta * \cdot \mathrm{~g}}{\mathrm{c}_{1}=\mathrm{F} / \mathrm{KJ} / \mathrm{g} \cdot \mathrm{C}=1 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}, \theta=9 \cdot{ }^{\circ} \mathrm{C}}$
$\mathrm{Q}_{1}=\Delta_{0} \times 1 \times\left(0-q_{0}\right)=-\psi \omega_{\omega} \cdot \mathrm{cal}$

$Q_{\mathrm{Y}}=m_{\mathrm{Y}} \mathrm{L}_{\mathrm{F}} \xrightarrow[\mathrm{L}_{\mathrm{F}}=\mathrm{A} \cdot \mathrm{cal} / \mathrm{g}]{\mathrm{m}_{\mathrm{r}}=\Delta \cdot \mathrm{g}} \mathrm{Q}_{\mathrm{Y}}=\mathrm{A}_{0} \times \mathrm{A}_{0}=\mathrm{F} \ldots \ldots \mathrm{cal}$
مى مين．بــما آب، F F．．．cal cal مىیدمد

$\Rightarrow \theta=\Delta^{\circ} \mathrm{C}$

 جرم يخ 1－1 به بخ ．${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \left(.^{\circ} \mathrm{C}\right)^{\text {C }}
\end{aligned}
$$

（1）AVg

$\Delta \mathrm{R}_{\mathrm{Cu}}-\Delta \mathrm{R}_{\mathrm{Fe}}=. / \mathrm{mm} \xrightarrow{\Delta \mathrm{R}=\alpha \mathrm{R}, \Delta \theta}$
$\alpha_{\mathrm{Cu}^{2}} \mathrm{R}_{1} \Delta \theta-\alpha_{\mathrm{Fe}^{2}} \mathrm{R}_{1} \Delta \theta=\mathrm{o} / \mathrm{rmm}$
$\Rightarrow \mathrm{R}_{1} \Delta \theta\left(\alpha_{\mathrm{Cu}}-\alpha_{\mathrm{Fe}}\right)=. / \mathrm{rmm}$

1．$\Delta \Delta \times\left(\left|r \times 10^{-9}-\right| r \times 10^{-9}\right)=r \times 10^{-1}$
$\Rightarrow \Delta \times 10^{-f} \Delta \theta=r \times 10^{-1}$
$\Rightarrow \Delta \theta=\psi_{\circ}{ }^{\circ} \mathrm{C}, \Delta \theta=\theta_{Y}-\theta_{1} \xrightarrow{\theta_{1}=.{ }^{\circ} \mathrm{C}} \psi_{\ldots}=\theta_{Y}-。$
$\Rightarrow \theta_{Y}=F \ldots{ }^{\circ} \mathrm{C}$

 r ${ }^{\circ} \mathrm{C}$
 رالاستبكى، تغيبر طول خططكث را انيز اضافه كتيهر حوالسمان باششد، طول الولية فالز

人。 $\times \alpha \times 1.0=\lambda_{0} \times$ rf $\times 10^{-9} \times 1 \ldots+0 / 19$
$\Rightarrow \alpha=\frac{\Lambda \times r+\times 10^{-r}+19 \times 10^{-r}}{\Lambda \times 10^{r}}=r \times \times 10^{-9}+r \times 10^{-\Delta}$
$\Rightarrow \alpha=f / f \times 10^{-\Delta} \mathrm{K}^{-1}$
（Yainjs）．AVA

$a^{\varphi}-b^{\top}=(a-b)(a+b)$
ابتدا با أستقاده الز رابط4 $\Delta \mathrm{L}=\alpha \mathrm{L}_{1} \Delta \theta \xrightarrow[\mathrm{~L}_{1}=\lambda \cdot \omega \mathrm{cm}]{\Delta \theta=r \Delta^{\circ} \mathrm{C}, \alpha=\gamma .^{-\Delta} \mathrm{K}^{-1}}$
$\Delta \mathrm{L}=r \times 10^{-\Delta} \times A_{0} \times \times{ }^{2}=. / \mathrm{cm}$
 رابط\＆فيتاغورس، X Xا راحساب مىكتيه｜＂
$\mathrm{L}_{\gamma}=\mathrm{L}_{1}+\Delta \mathrm{L} \xrightarrow[\Delta \mathrm{L}=. / \mathrm{fcm}]{\mathrm{L}_{1}=\mathrm{cm}_{\cdots} \cdot \mathrm{Lm}} \mathrm{L}_{\gamma}=\lambda_{\circ}+. / \uparrow=\lambda_{\omega} / \uparrow \mathrm{cm}$
$x^{r}+\left(\frac{L_{1}}{r}\right)^{r}=\left(\frac{L_{r}}{r}\right)^{r} \Rightarrow x^{r}=\frac{L_{r}^{r}}{r}-\frac{L_{1}^{r}}{r} \Rightarrow \psi x^{r}=L_{r}^{r}-L_{1}^{r}$

مى توان نوشسٌت
$\Delta F=\frac{Y r}{1 \ldots} F_{1} \xrightarrow[F=\frac{q}{\Delta} \theta+r r]{\Delta F=\frac{q}{\Delta} \Delta \theta} \frac{q}{\Delta}\left(\theta_{Y}-\theta_{1}\right)=\frac{Y r}{1 \ldots 0} \times\left(\frac{q}{\Delta} \theta_{1}+r r\right)$
$\xrightarrow{\theta_{\mathrm{T}}=r \theta_{1}} \frac{q}{\Delta} \times\left(r \theta_{1}-\theta_{1}\right)=\frac{r r}{100} \times\left(\frac{q}{\Delta} \theta_{1}+r r\right)$
$\Rightarrow \frac{\Delta \Delta \theta_{1}}{\Delta}=\frac{r r}{100} \times\left(\frac{q}{\Delta} \theta_{1}+r r\right) \Rightarrow \Delta \theta_{1}=\frac{q}{\Delta} \theta_{1}+r r \Rightarrow \theta_{1}=1 .{ }^{\circ} \mathrm{C}$
كام دوم دما يرحسب كلوين را به دست مىآورئه：
$T_{1}=r r r+\theta_{1} \xrightarrow{\theta_{1}=1 \cdot{ }^{\circ} \mathrm{C}} T_{1}=r r r+1 \cdot \Rightarrow T_{1}=r \wedge r K$

 دماى برأــر共 برابر
 （ $\quad\left(\theta=1 . \circ^{\circ} \mathrm{C}\right)$ $\frac{h-h_{1}}{h_{Y}-h_{1}}=\frac{\theta-\theta_{1}}{\theta_{Y}-\theta_{1}} \Rightarrow \frac{h-r_{0}}{r_{0}-r_{0}}=\frac{Y_{0}-r_{0}}{r_{0}-r_{0}}$
$\Rightarrow \frac{h-r_{0}}{r_{0}-r_{0}}=\frac{\Lambda_{0}}{100} \Rightarrow h=r 9 \mathrm{~mm}$
（Y）AVA
كام إلل

$\mathrm{L}_{1 \mathrm{Cu}}=\mathrm{L}_{4 \mathrm{Fe}}-1 \xrightarrow{\mathrm{~L}_{\mathrm{Pe}}=1 \ldots \mathrm{rmm}} \mathrm{L}_{1 \mathrm{Cu}}=1$ 。or $-1=1.0$ ． mm

 $\Delta \mathrm{L}_{\mathrm{Cu}}-\Delta \mathrm{L}_{\mathrm{Fe}}=r \xrightarrow{\Delta \mathrm{~L}=\alpha \mathrm{L}, \Delta \mathrm{T}} \quad \quad \underset{\mathrm{H}}{\mathrm{H}} \mathrm{C}$
$\alpha_{\mathrm{Cu}} \mathrm{L}_{\mathrm{Cu}} \Delta \mathrm{T}-\alpha_{\mathrm{Fe}^{2}} \mathrm{~L}_{\mathrm{Fe}} \Delta \mathrm{T}=r$

$\Rightarrow 9 \times 10^{-9} \Delta \mathrm{~T} \times\left(r_{0.9}-r_{0.9}\right)=r$
$\Rightarrow 9 \times 10^{-9} \Delta \mathrm{~T} \times 1 \ldots=r$
$\Rightarrow q \times 10^{-r} \Delta \mathrm{~T}=r \Rightarrow \Delta \mathrm{~T}=\Delta \cdot \cdot \mathrm{K}, \mathrm{T}_{1}=\theta_{1}+r v r=r v r \mathrm{~K}$
$T_{Y}=T_{1}+\Delta T \xrightarrow{T_{1}=\gamma V r K} T_{Y}=r Y r+\Delta_{\omega}=\gamma Y r K$

 كرده الـــتا يس ناهمتام با q يعتى متبت استت. براى محاسبه:
 نظر كُرفت.

 $\tan \mathrm{r}_{0^{\circ}}=\frac{\mathrm{F}_{\mathrm{F}}}{\mathrm{F}_{\mathrm{r}}}$
 باز مىكتيهر و داريمنا $\tan r_{0}^{\circ}=\frac{k \frac{\left|q_{1} q\right|}{r_{r}^{r}}}{k \frac{\left|q_{r} q\right|}{r_{r}^{r}}} \Rightarrow \frac{\sqrt{r}}{r}=\frac{\left|q_{1}\right|}{\left|q_{r}\right|} \times\left(\frac{r_{r}}{r_{1}}\right)^{r}$
$\Rightarrow \frac{\sqrt{r}}{r}=\frac{\left|q_{1}\right|}{\left|q_{r}\right|} \times\left(\frac{10}{\varphi}\right)^{r} \Rightarrow \frac{\left|q_{1}\right|}{\left|q_{r}\right|}=\frac{r \sqrt{r}}{r \Delta}$

 الـــت، پس نيروى
 $\tan \theta=\frac{F}{\sqrt{r F}}=\frac{\sqrt{r}}{r} \Rightarrow \theta=r$. روب4ر بتوبيسها:

 بر بار q واقع در C تغيير مى كتد و مطبابق شكل نيروى الكتريكى خالص وأرد بر

 حاهم از متلت الست: $\tan \alpha=\frac{\mathrm{F}_{\mathrm{r}}}{\mathrm{F}_{\mathrm{I}}}$

$\stackrel{\vec{T}}{\vec{\sigma}} \underset{\sim}{\vec{\sigma}}$
$\mathrm{m} \overrightarrow{\mathrm{E}} \overrightarrow{\mathrm{F}}-\mathrm{T}$

 بالا در متلت رنّى میىتوان نوشت: :
$\Rightarrow \tan \alpha=\frac{\mathrm{F}}{\mathrm{mg}}$

 تست را ياسخ دهيد:

$$
F=\frac{9 \times 1 .^{9} \times \cdot / \Delta \times 10^{-9} \times \cdot / \Delta \times 10^{-9}}{. / r^{r}}=r / \Delta \times 10^{-r} \mathrm{~N}
$$

$$
\tan r r^{\circ}=\frac{r / \Delta \times 10^{-r}}{\mathrm{mt\mid} \cdot} \xrightarrow{\tan r r^{\circ}=\frac{r}{r}} \mathrm{~m}=\frac{1}{r \cdot \cdot} \mathrm{~kg} \Rightarrow \mathrm{~m}=\frac{1 \cdot}{r} \mathrm{~g}
$$

(5).

80 يادآورى: در متلت قائهالزارية ABC

 $\mathrm{R}_{\mathrm{eq}}=\frac{1 r \times 9}{1 r+9}=\psi \Omega$

است با:
(Wdixj).IFIF

$$
\Rightarrow \sum_{A R}^{B} \Rightarrow R_{e q}=\frac{H R}{r} \Rightarrow R_{e q}=r R
$$

(1dij5) IF1 Δ

با توجه به اينكه دو ســر مقاومت YR دR شــــاته بالالى مـار با سيمر به همر وصل

$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\frac{\mathrm{R}_{Y} \mathrm{R}_{r}}{\mathrm{R}_{Y}+\mathrm{R}_{r}} \xrightarrow[\mathrm{R}_{\mathrm{r}}=1 r \Omega]{\mathrm{R}_{\text {eq }}=1 r \Omega, \mathrm{R}_{1}=\varphi \Omega}$
$1 T=9+\frac{1 \Gamma R_{r}}{1 T+R_{r}} \Rightarrow 9=\frac{1 r R_{r}}{1 T+R_{r}} \Rightarrow 1=\frac{r R_{r}}{1 T+R_{r}}$
$\Rightarrow r R_{r}=1 r+R_{r} \Rightarrow R_{r}=1 r \Omega$

 .

$R_{e q}=\frac{\frac{r R}{r} \times R}{\frac{r R}{r}+R} \xrightarrow{\frac{r}{e q}=r \Omega} r=\frac{\frac{r R}{r} \times R}{\frac{\Delta R}{r}} \Rightarrow r=\frac{r R}{\Delta} \Rightarrow R=\Delta \Omega$

$\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}_{1} \mathrm{R}_{Y}}{\mathrm{R}_{1}+\mathrm{R}_{Y}}+\mathrm{R}_{r} \xrightarrow{\mathrm{R}_{\text {eq }}=\mathrm{R}_{\uparrow}} \mathrm{R}_{1}=\frac{\mathrm{R}_{1} \mathrm{R}_{Y}}{\mathrm{R}_{1}+\mathrm{R}_{Y}}+\mathrm{R}_{r}$
$\Rightarrow R_{r}=R_{1}-\frac{R_{1} R_{Y}}{R_{1}+R_{Y}} \Rightarrow R_{r}=\frac{R_{Y}^{Y}+R_{1} R_{Y}-R_{1} R_{Y}}{R_{1}+R_{Y}}$
$\Rightarrow R_{r}=\frac{R_{i}^{r}}{R_{Y}+R_{Y}}$

家 $r+r-9 \Omega$

A

18A. 1 .
 مغناطيسى اســت كه در دو ســر آن (فطبها آنـا اين

 المتداد عمودمنصف ميله الققى، به آن نز نزديكى مى كتيهـا

 A با ميله أهتى استى.
بتابراين مىتوالئمر آهن و آهتربا را تشخيص دهيه، الما به هيج روششى نمى توانيهم قطبهها را تعيين كتيمه
1011.

 مغناطيسى(جهت فلش) جهت خطوور ميدان رانشان مى دهد. بنايراين جهتّكيرى

(AAF بتابراين در بك دور كامل، عقريه

كام دوم تــوان مصرفى هر معاومــت را'ز رابطط4 مقايسه میكتـتهم:
$P_{1}=R_{1} I_{1}^{r}=1 \times \frac{F I^{r}}{q} \Rightarrow P_{1}=\frac{F}{q} I^{r}$
$P_{r}=R_{r} I_{r}^{r}=r \times \frac{\psi I^{r}}{q} \Rightarrow P_{r}=\frac{\psi}{r} I^{r}$
$P_{r}=R_{r} I_{r}^{r}=r \times \frac{I^{r}}{q} \Rightarrow P_{r}=\frac{r}{q} I^{r}$
$P_{f}=R_{F} I_{f}^{r}=9 \times \frac{I^{r}}{q} \Rightarrow P_{f}=\frac{r}{r} I^{r}$
 بقيه مقاومتها كمتر استا 10V8

 در جهت خطوط ميدان قرار مى كّيرد، داريهم:

 S. $1 \Delta \mathrm{VA}$
 حتمأ أهترباست و قطب سمت راست آن

 10V9

 A ($\mathrm{B}_{\mathrm{Y}}>\mathrm{B}_{1}$) (190 190F

 بزر كَتر مىتُود.

با باتوجه به بـــاهآورى بالا و با حركت الز الز به سمت نقطلة O ، فاصله تادو سيمر كمتر شده و در نتيجه النازة B النزايش مى هيابيد.

 برايتد ميان سيهرما كاهاهث مىيريابد.
1980.

 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}} \Rightarrow \widehat{\mathrm{B}}=\widehat{\mathrm{C}}=r_{\circ}^{\circ}$
$\widehat{\mathrm{A}}=1 \hat{N}_{0}-\widehat{\mathrm{B}}-\widehat{\mathrm{C}}=1 \hat{N}_{0}-g_{0}=1 r_{0}^{\circ}$

حالا ائر سيه را به وسط ضالع BC انتقال دهيه؛ داريهم:

بتابراين جهت برار مبيان مغتاطيسى 9 ت تغيير كرده استْ.

 با توجه به تقارن شُكل، زاوية

	كزيته \$\%**
	كزيته

 190T

(190r

$$
\overrightarrow{\mathrm{B}}_{\mathrm{r}} \otimes \quad \overrightarrow{\mathrm{~B}}_{\mathrm{r}} \otimes \quad \overrightarrow{\mathrm{~B}}_{\mathrm{r}} \oplus
$$

كام دوم در نقاط C , جهت ميلانهاى C

$\Phi_{1}=\mathrm{BA}_{1} \cos \theta \xrightarrow[\theta={ }^{\circ}]{\mathrm{B}=\mathrm{V} \Delta \mathrm{T}} \Phi_{1}=1 / \Delta \times \frac{\pi}{1 \mathrm{~K}_{0} \cdot}=\frac{\pi}{\lambda_{0}} \mathrm{~Wb}$
: حالت دوم باتوجهبهزاويه : است و داريهم:
$\mathrm{A}_{\mathrm{OAB}^{\prime}}=\frac{\pi \mathrm{R}^{r}}{r}=\frac{\pi(\cdot / 1)^{r}}{r}=\frac{\pi}{r_{0}}$
$\Phi_{Y}=B A_{Y} \cos \theta \Rightarrow \Phi_{Y}=1 / \Delta \times \frac{\pi}{r_{00}}=\frac{\pi}{r_{00}} \mathrm{~Wb}$
$\Rightarrow \Delta \Phi=\Phi_{r}-\Phi_{1}=\frac{\pi}{r_{00}}-\frac{\pi}{\Lambda_{0}}=\frac{r_{0}}{\Lambda_{00}} \mathrm{~Wb}$

$\mathrm{t}=\frac{-\mathrm{b}}{\mathrm{ra}} \xrightarrow{\mathrm{t}=\mathrm{Fs}} \mathrm{r}=\frac{-\mathrm{b}}{\mathrm{ra}} \Rightarrow \mathrm{b}=-\lambda \mathrm{a}$
 $19 \mathrm{a}+r(-\lambda a)=-1 r \Rightarrow-19 \mathrm{a}=-1 r \Rightarrow \mathrm{a}=\frac{r}{r}, \mathrm{~b}=-\lambda \mathrm{a}=-9$
 را در دو ثاتي8 ســوم يعنى بين الز رابط4
$\left.t_{1}=\psi s \Rightarrow \Phi_{1}=\frac{r}{\psi}(\psi)^{r}-\varphi(\psi)+1_{0}=-r \mathrm{~Wb}\right\}$
$\left.\mathrm{t}_{\mathrm{r}}=\varphi \mathrm{s} \Rightarrow \Phi_{\mathrm{r}}=\frac{r}{r}(\varphi)^{r}-\varphi(\varphi)+10=1 \mathrm{~Wb}\right\}$
$\Rightarrow \overline{\mathcal{E}}=-\mathrm{N} \frac{\Delta \Phi}{\Delta \mathrm{t}}=-1 \times \frac{1-(-r)}{r}=\frac{-r}{r} \mathrm{~V}$

ميدان است: يعتى در اين لحظه شار صغر و نيروى محركة القايى بيشينـ
 لولينبار سطح قاب بر خطوط ميدان عمود شده و شار بـيشينه شُده استا بتابراين زمانهـــا را بر روى تمودار ($\frac{\mathrm{T}}{\mathrm{F}}=\mathrm{o} / \mathrm{s}$)

F بـار تغيير كرده اسـتـ.
. 1 AFf

$\Phi=\left(\mathrm{at}^{r}+\mathrm{bt}-1\right) \times 10^{-r} \xrightarrow[\Phi=1=1 \mathrm{c}]{\mathrm{t}} \mathrm{Wb}$
$10^{-r}=\left(a(1)^{r}+b(1)-1\right) \times 10^{-r} \Rightarrow a+b-1=10 \Rightarrow a+b=11$
$\frac{\mathrm{I}^{\prime}}{\mathrm{I}}=\frac{\mathrm{V}^{\prime \prime}}{V} \times \frac{\mathrm{R}}{\mathrm{R}^{\prime}}=\frac{1}{r}$
خواهد شد و باتوجه به قانون اهمم اريهم|
$\frac{B^{\prime}}{B}=1 \times \frac{1}{r}=\frac{1}{r}$

(1) |AA9 ($\frac{\pi}{r}$) Q_{0}°

تغيير نكرده الست، در اين حالت شُار مغتاطيسى تغغير نمى كتد. $\Delta \Phi=\circ \overline{\mathscr{E}}=$.

:حالت دووم صنحه، $\frac{\pi}{r}$ نسبت به خطوط ميلان مى جرخد و با تغيير زاويث آن نسبت به خطوط ميدان، شُــار مغناطيسى تغيـير مى كتـد. با توجه به اين كه ميدان مغتاطيسى و مساحت قاب در اين مسئله ثابت است، داريم:

$|\overline{\mathscr{E}}|=\mathrm{N}\left|\frac{\Delta \Phi}{\Delta \mathrm{t}}\right|=\mathrm{NBA}\left|\frac{\cos \theta_{r}-\cos \theta_{1}}{\Delta \mathrm{t}}\right|$
$=1 x_{0} / . r \times\left(\psi_{0} \times \times 10^{-r}\right) \times\left|\frac{0 / r}{\circ /-1}\right|=r \times 10^{-r} \mathrm{~V}$
.

 محيــط آن ثابت مىماند. الز اين نكته براى بـي دسـت آوردن رابطلة بين ضلع مريع با شعاع

 bana: =Fa \quad bace $=\gamma \pi r$

محيطمرع $\Rightarrow r \pi r=r a \Rightarrow a=\frac{\pi r}{r}$
 $\frac{\Phi_{r}}{\Phi_{1}}=\frac{A_{r}}{A_{1}}=\frac{a^{r}}{\pi r^{r}} \xrightarrow[\pi=r]{a=\frac{\pi r}{r}} \frac{\Phi_{r}}{\Phi_{1}}=\frac{r}{r} \Rightarrow \Phi_{r}=\frac{r}{r} \Phi_{1}$

حال با استغاده از رابطه زير، درصد تغييرات را به دست مىآوريها: $=\frac{\Phi_{r}-\Phi_{1}}{\Phi_{1}} \times 1 \ldots=\frac{\frac{r}{r} \Phi_{1}-\Phi_{1}}{\Phi_{1}} \times 1 \ldots=-r \Delta \%$

بتابراين شار . 1491.

دوحالت زير را بررسى مى كتيهم و درنهايت 1 . حالت اول با توجه به زاوية بتابراين ماريهم:
$\mathrm{A}_{\mathrm{OAB}}=\frac{\pi \mathrm{R}^{r}}{1 r}=\frac{\pi(0 / 1)^{r}}{1 r}=\frac{\pi}{1 r_{0}} \mathrm{~m}^{r}$
$\Phi_{1}=\mathrm{BA}_{1} \cos \theta \xrightarrow[\theta={ }^{\circ}]{\mathrm{B}=\mathrm{V} \Delta \mathrm{T}} \Phi_{1}=1 / \Delta \times \frac{\pi}{1 \mathrm{~K}_{0} \cdot}=\frac{\pi}{\lambda_{0}} \mathrm{~Wb}$
: حالت دوم باتوجهبهزاويه : است و داريهم:
$\mathrm{A}_{\mathrm{OAB}^{\prime}}=\frac{\pi \mathrm{R}^{r}}{r}=\frac{\pi(\cdot / 1)^{r}}{r}=\frac{\pi}{r_{0}}$
$\Phi_{Y}=B A_{Y} \cos \theta \Rightarrow \Phi_{Y}=1 / \Delta \times \frac{\pi}{r_{00}}=\frac{\pi}{r_{00}} \mathrm{~Wb}$
$\Rightarrow \Delta \Phi=\Phi_{r}-\Phi_{1}=\frac{\pi}{r_{00}}-\frac{\pi}{\Lambda_{0}}=\frac{r_{0}}{\Lambda_{00}} \mathrm{~Wb}$

$\mathrm{t}=\frac{-\mathrm{b}}{\mathrm{ra}} \xrightarrow{\mathrm{t}=\mathrm{Fs}} \mathrm{r}=\frac{-\mathrm{b}}{\mathrm{ra}} \Rightarrow \mathrm{b}=-\lambda \mathrm{a}$
 $19 \mathrm{a}+r(-\lambda a)=-1 r \Rightarrow-19 \mathrm{a}=-1 r \Rightarrow \mathrm{a}=\frac{r}{r}, \mathrm{~b}=-\lambda \mathrm{a}=-9$
 را در دو ثاتي8 ســوم يعنى بين الز رابط4
$\left.t_{1}=\psi s \Rightarrow \Phi_{1}=\frac{r}{\psi}(\psi)^{r}-\varphi(\psi)+1_{0}=-r \mathrm{~Wb}\right\}$
$\left.\mathrm{t}_{\mathrm{r}}=\varphi \mathrm{s} \Rightarrow \Phi_{\mathrm{r}}=\frac{r}{r}(\varphi)^{r}-\varphi(\varphi)+10=1 \mathrm{~Wb}\right\}$
$\Rightarrow \overline{\mathcal{E}}=-\mathrm{N} \frac{\Delta \Phi}{\Delta \mathrm{t}}=-1 \times \frac{1-(-r)}{r}=\frac{-r}{r} \mathrm{~V}$

ميدان است: يعتى در اين لحظه شار صغر و نيروى محركة القايى بيشينـ
 لولينبار سطح قاب بر خطوط ميدان عمود شده و شار بـيشينه شُده استا بتابراين زمانهـــا را بر روى تمودار ($\frac{\mathrm{T}}{\mathrm{F}}=\mathrm{o} / \mathrm{s}$)

F بـار تغيير كرده اسـتـ.
. 1 AFf

$\Phi=\left(\mathrm{at}^{r}+\mathrm{bt}-1\right) \times 10^{-r} \xrightarrow[\Phi=1=1 \mathrm{c}]{\mathrm{t}} \mathrm{Wb}$
$10^{-r}=\left(a(1)^{r}+b(1)-1\right) \times 10^{-r} \Rightarrow a+b-1=10 \Rightarrow a+b=11$
$\frac{\mathrm{I}^{\prime}}{\mathrm{I}}=\frac{\mathrm{V}^{\prime \prime}}{V} \times \frac{\mathrm{R}}{\mathrm{R}^{\prime}}=\frac{1}{r}$
خواهد شد و باتوجه به قانون اهمم اريهم|
$\frac{B^{\prime}}{B}=1 \times \frac{1}{r}=\frac{1}{r}$

(1) |AA9 ($\frac{\pi}{r}$) Q_{0}°

تغيير نكرده الست، در اين حالت شُار مغتاطيسى تغغير نمى كتد. $\Delta \Phi=\circ \overline{\mathscr{E}}=$.

:حالت دووم صنحه، $\frac{\pi}{r}$ نسبت به خطوط ميلان مى جرخد و با تغيير زاويث آن نسبت به خطوط ميدان، شُــار مغناطيسى تغيـير مى كتـد. با توجه به اين كه ميدان مغتاطيسى و مساحت قاب در اين مسئله ثابت است، داريم:

$|\overline{\mathscr{E}}|=\mathrm{N}\left|\frac{\Delta \Phi}{\Delta \mathrm{t}}\right|=\mathrm{NBA}\left|\frac{\cos \theta_{r}-\cos \theta_{1}}{\Delta \mathrm{t}}\right|$
$=1 x_{0} / . r \times\left(\psi_{0} \times \times 10^{-r}\right) \times\left|\frac{0 / r}{\circ /-1}\right|=r \times 10^{-r} \mathrm{~V}$
.

 محيــط آن ثابت مىماند. الز اين نكته براى بـي دسـت آوردن رابطلة بين ضلع مريع با شعاع

 bana: =Fa \quad bace $=\gamma \pi r$

محيطمرع $\Rightarrow r \pi r=r a \Rightarrow a=\frac{\pi r}{r}$
 $\frac{\Phi_{r}}{\Phi_{1}}=\frac{A_{r}}{A_{1}}=\frac{a^{r}}{\pi r^{r}} \xrightarrow[\pi=r]{a=\frac{\pi r}{r}} \frac{\Phi_{r}}{\Phi_{1}}=\frac{r}{r} \Rightarrow \Phi_{r}=\frac{r}{r} \Phi_{1}$

حال با استغاده از رابطه زير، درصد تغييرات را به دست مىآوريها: $=\frac{\Phi_{r}-\Phi_{1}}{\Phi_{1}} \times 1 \ldots=\frac{\frac{r}{r} \Phi_{1}-\Phi_{1}}{\Phi_{1}} \times 1 \ldots=-r \Delta \%$

بتابراين شار . 1491.

دوحالت زير را بررسى مى كتيهم و درنهايت 1 . حالت اول با توجه به زاوية بتابراين ماريهم:
$\mathrm{A}_{\mathrm{OAB}}=\frac{\pi \mathrm{R}^{r}}{1 r}=\frac{\pi(0 / 1)^{r}}{1 r}=\frac{\pi}{1 r_{0}} \mathrm{~m}^{r}$

